环保工程师的家园网站首页技术频道地图

您所在的位置:首页 > 废气 > 脱硫技术 > 活性炭脱硫中吸附反应空间的研究(3)

活性炭脱硫中吸附反应空间的研究(3)

2009-05-16 中国环保技术网 我要评论(0) 字号:T | T
一键收藏,随时查看,分享好友!

3. 活性炭脱硫过程吸附反应空间的分析 一个化学反应中各个反应物分子的总构型需要占有一定的空间尺寸,这样的分子构型系统相当于

AD:广告链接

3. 活性炭脱硫过程吸附反应空间的分析
    一个化学反应中各个反应物分子的总构型需要占有一定的空间尺寸,这样的分子构型系统相当于物理吸附过程中的一个大分子,也具有一定的临界尺寸(即包括电子云在内的分子外边界当量直径) .反应分子构型系统临界尺寸的计算需要针对反应过程的每一个分子的迁移和化学键的变化情况进行具体分析. 由于分子运动的不确定性,通常只能对其估算出近似值(后文中所用的分子键长和键角等数据均可在有关化学文献中查到) .
    3.1 产生H2O2 所需要的反应空间估算
    如上所述,活性炭表面H2O2 的产生可通过式(1) 和式(2) 两种途径. 在这两种途径中,每形成1 个分子的H2O2 ,均需要1 个分子的O2 和2 个分子的H2O. O2 分子的键结构包括一个双电子的σ键和2个三电子的π键. 当得到1 个电子之后,形成的O-2的键长由0. 121 nm 增加为0. 128~0. 130 nm ,解离能有所降低, 并表现出很强的亲质子性, 能拆散H2O 分子中的1 个O - H 键. 分离出来的这个质子与O -2 中得到电子的那个O 原子形成双电子的σ键,同时失去1 个三电子的π 键,产物为HO2 ,而H2O 分子的其余部分因多1 个电子而带负电,成为OH%.
    HO2 是一种并不稳定的氢氧化物,而未与H+结合的那个O 原子可以再得到1 个π 电子形成HO -2 . HO -2 具有与O -2 类似的亲质子性,亦能拆散H2O 分子中的1 个O - H 键. 分离出来的质子与HO -2 中的第2 个O 原子结合,形成单键结构,同时失去另一个π键结构,得到最终的产物为H2O2 .生成H2O2 的过程示意图见图1.

从图1 可以看出,2 个H2O 分子为O2 分子提供质子的方位是不同的,而最后成键的结果使H2O2分子中的2 个O - H 键具有111. 5°的二面角结构.因此,只有当H2O 分子的其中一个O - H 键中的H原子位于O2 分子中的共价键附近且与之近似垂直的位置,才有可能被O 原子吸引. 与此同时,必须存在另一个H2O 分子与O2 分子组成上面的空间构型,而且这2 个H 原子与O2 分子共价键所形成的2个平面必须构成近似111. 5°的二面角.
    在上述的反应过程中,反应构型临界尺寸的计算还涉及到H 和O 的原子半径,其值可在“原子和离子半径表”中查出,形成单σ键的H 的原子半径为0. 037 nm , 而形成单σ 键的O 的原子半径为0. 066 nm. 需要说明的是,这里使用的原子半径必须是同一个分子中的共价半径,而并非是以不同分子间的核间距来定义的范德瓦尔斯半径.
    根据反应中各反应物分子的几何构型、空间位置、键长以及分子中每一个原子的共价半径,可以求出要形成这种反应空间所需要的最小孔容空间. 对于产生H2O2 的反应空间,可经过对其几何构型的估算得出,孔宽至少应大于0. 6 nm.
    3.2 生成H2SO4 所需要的反应空间估算
    在有H2O 存在的情况下,在碱性环境中, SO2的水合物的主要成分为物质的量之比近似为1∶2 的SO2-3 和H+ . SO2 -3 的结构为三角锥形,含有3 条S- Oσ键和3条p - dπ反馈键,而且有一对孤对电子. S - Oσ键长为0. 143 nm , 相邻键间的夹角为119. 5°.由于SO2 中的S 元素处于中间价态,因此既可以具有氧化性,也可以具有还原性. SO2 -3 转化为SO2 -4 的标准电极电势为- 0. 93 V ,而H2O2 转化为H2O 的标准电极电势为+ 1. 776 V. 根据氧化2还原反应方向的判断法则,可知H2O2 和SO2 -3 可发生反应生成SO2 -4 和H2O. SO2 -4 的结构为正四面体,含有4 条S - Oσ键和4 条p - dπ键,没有孤对电子.S - Oσ的键长增加为0. 149 nm ,键的夹角减小为109. 3°.
    H2O2 氧化SO2 -3 的化学方程式如下
    SO2 -3 + H2O2—SO2 -4 + H2O (4)
    H2O2 氧化SO2 -3 的过程实际上就是SO2 -3 原子团中的孤对电子重新成键的过程,而SO2 -4 中第4个O 原子必须来源于H2O2 分子. 因此,这个过程是必须依次拆开H2O2 分子中的O - H 键和O - O 键.在H2O 中,H2O2 显弱酸性,因而存在下面的化学平衡式
    H2O2—H+ + HO-2  K1 = 1. 55 ×10- 2 (5)
    HO-2—H+ + O2 -2  K2 ≈ 10- 25 (6)
    式(6) 中的平衡常数很小,生成的O2 -2 是微乎其微的,因此H2O2 在H2O 中电离产物的主要存在形式为HO -2 .H+ 的离开使HO -2 中的1 个O 原子出现1 个空2p 轨道,正好与SO2 -3 中的孤对电子形成配位,而形成的配位产物的另一侧成为1 个羟基( - OH) .在H+ 的环境中,X - OH 键会发生断裂,并与H+ 结合生成H2O ,而与此同时,配位产物也转变为SO2 -4 .生成SO2 -4 的过程示意图见图2.
    由图2 可以看出,只有当H2O2 分子中的其中一个O - H 键中的H 原子位于SO2 -3 原子团的孤对电子附近时,才有可能被SO2 -3 原子团吸引,形成共价键结构. 结合反应物分子或离子的几何构型对产生SO2 -4 所需要的反应空间进行估算,则至少需要直径大于0. 70 nm 的空间.

  3. 3分子缔合效应对反应空间的影响
    由于H2O 分子和H2O2 分子之间除了van derWaals 力之外,还有较强的氢键作用,因此会发生缔合作用而形成包含有一定数量分子的分子团. 大分子团的存在使SO2 氧化反应所需要的反应空间进一步增大,使可以被有效利用的孔宽下限值进一步增加. 一般情况下,缔合程度会随温度的升高而降低,Wilke 和Chang 曾对此提出缔合系数的概念,并认为在通常情况下,水分子团(H2O) x 中的x 取值在2~3 之间.
    以上这3 种作用(本文3. 1~3. 3 三节中提到的作用) 共同作用时,可以有效利用的孔宽下限会略有增加,而且由于操作条件的不确定性,孔宽下限很难精确求解,应对其进行具体的实验测定.
    另一方面,当孔宽很大的时候,由于吸附势能场的减弱,孔隙空间也不能得到充分利用. 根据本文的实验,可以认为当孔宽在1. 0 nm 左右的时候,孔隙可以作为最为有效的吸附反应空间. 在本文的实验中,MHY60 型活性炭的rpeak与MHY30 型活性炭接近,但外表面积较小, 因而吸附容量较小, 而MHY30 型活性炭具有适当的孔径分布和外表面积,因而具有最高的吸附容量.
4. 结 论
    在水涤脱附的条件下,活性炭法烟气脱硫的吸附机理与干态时有明显的不同. 当有水存在时,SO2发生氧化的条件是孔隙中必须具有一定的反应空间,吸附位只能产生在吸附剂表面具有适当的分子间距和空间构型的位置. 因而,活性炭的孔径分布是决定吸附材料对SO2 吸附性能的关键因素. 当孔隙结构的孔宽为1. 0 nm 左右时,吸附过程具有最大的孔隙利用率. 在水涤脱附的条件下,峰值孔径大于1 nm、颗粒直径为3 mm 左右的MHY30 型活性炭是一种优良的吸附材料.


【责任编辑:管理员 TEL:400-666-4470】

百度广告
分享到:

文章排行

本月本周24小时

热点专题

更多>>

热点推荐

资料

CLT/A型旋风除尘器(
泊头市宏大除尘设备制造有限公司坐落于运河城畔的洼里王工业区,是一家从事设计 生产 制造 研发于一体的环保除尘企业。公司成立于2008年,地处北京、天津、济...

最新热帖

更多>>